User-Independent Motion State Recognition Using Smartphone Sensors
نویسندگان
چکیده
The recognition of locomotion activities (e.g., walking, running, still) is important for a wide range of applications like indoor positioning, navigation, location-based services, and health monitoring. Recently, there has been a growing interest in activity recognition using accelerometer data. However, when utilizing only acceleration-based features, it is difficult to differentiate varying vertical motion states from horizontal motion states especially when conducting user-independent classification. In this paper, we also make use of the newly emerging barometer built in modern smartphones, and propose a novel feature called pressure derivative from the barometer readings for user motion state recognition, which is proven to be effective for distinguishing vertical motion states and does not depend on specific users' data. Seven types of motion states are defined and six commonly-used classifiers are compared. In addition, we utilize the motion state history and the characteristics of people's motion to improve the classification accuracies of those classifiers. Experimental results show that by using the historical information and human's motion characteristics, we can achieve user-independent motion state classification with an accuracy of up to 90.7%. In addition, we analyze the influence of the window size and smartphone pose on the accuracy.
منابع مشابه
Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones
This paper proposes a novel heading estimation approach for indoor pedestrian navigation using the built-in inertial sensors on a smartphone. Unlike previous approaches constraining the carrying position of a smartphone on the user's body, our approach gives the user a larger freedom by implementing automatic recognition of the device carrying position and subsequent selection of an optimal str...
متن کاملSmartphone-based construction workers' activity recognition and classification
Article history: Received 3 October 2015 Received in revised form 24 July 2016 Accepted 13 August 2016 Available online 21 August 2016 Understanding the state, behavior, and surrounding context of construction workers is essential to effective project management and control. Exploiting the integrated sensors of ubiquitous mobile phones offers an unprecedented opportunity for an automated approa...
متن کاملPACP: A Position-Independent Activity Recognition Method Using Smartphone Sensors
Human activity recognition has been a hot topic in recent years. With the advances in sensor technology, there has been a growing interest in using smartphones equipped with a set of built-in sensors to solve tasks of activity recognition. However, in most previous studies, smartphones were used with a fixed position—like trouser pockets—during recognition, which limits the user behavior. In th...
متن کاملImprovement of the Effective Components in the PDR Positioning Method Based on Detecting the User’s Movement Mode Using Smartphone Sensors
The purpose of this paper is to evaluate and improve the accuracy of indoor positioning using smartphone sensors based on Pedestrian Dead Reckoning (PDR) method. In some specific situations, such as fires or power outages that disable infrastructure-based positioning techniques, using PDR method based on smartphone sensors that perform positioning continuously is a good solution.This paper focu...
متن کاملIDNet: Smartphone-based gait recognition with convolutional neural networks
Here, we present IDNet, an original user authentication framework from smartphone-acquired motion signals. Its goal is to recognize a target user from her/his way of walking, using the accelerometer and gyroscope (inertial) signals provided by a commercial smartphone worn in the front pocket of the user’s trousers. Our design features several innovations including: a robust and smartphone-orien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2015